

APPENDIX B

Structural Slab Design

Design calculations and tables are derived from <u>Concrete Reinforcing Steel Institute Design</u> <u>Handbook</u>, 2002.

Slab Design

Typical Bay Size: 30' x 30' Average Column Size: 24" x 24"

Live Load: 100 PSF	
Dead Load:	
Ceiling	10 PSF
Sarnatherm XPS Insulation	0.69 PSF
Sarnafelt NWP-HD Separation Layer	0.13 PSF
Sarnafil G476-15 Waterproofing Membrane	0.33 PSF
Drainage Panel 900	0.23 PSF
Saturated Growth Media and Plants	<u>48 PSF</u>
	59.38 PSF ≈ 60 PSF

Strength Design

 $w_u = 1.4$ Dead Load x 1.7 Live Load $w_u = 1.4$ (60 PSF) x 1.7 (100 PSF) $w_u = 254$ PSF

Clear span between the column and interior beam is conservatively estimated to be 13'-6". Clear span between columns is 28'-0". Therefore the clear span between column line and interior beam is likely even smaller than 13'-6" given that the beam design will likely yield a beam width of greater than 1'-0". Assuming a larger clear span value is a conservative estimate for the slab thickness design.

The minimum allowable slab thickness is $\ell/28 = 15'/28 = 6.4''$. Therefore, a minimum slab thickness of 6.5'' will be used.

Based on the Solid One-Way Slab tables in Chapter 7 of the CRSI Handbook, the minimum amount of reinforcement that can be used in a 6.5" slab based on a factored load of 254 PSF is $\rho\approx 0.0050$. End span and interior span tables located on pages 7-12 and 7-17, respectively, are used. End span loading is most critical in determining slab thickness because of the increased shear in these regions.

End Spans: See Table 1. $w_u = 312 \text{ PSF} \text{ capacity} > 254 \text{ PSF}$

Top Bars, #5 @ 11" Bottom Bars, #5 @ 12" Top Bars at Free End, #4 @ 12" Temperature Bars, #4 @ 17"

Interior Spans: See Table 2. $w_u = 355 \text{ PSF} \text{ capacity} > 254 \text{ PSF}$

Top Bars, #5 @ 11" Bottom Bars, #4 @ 10" Temperature Bars, #4 @ 17"

Serviceability Check

1. Deflection - Maximum deflection occurs in the end span.

2. Crack Control – Based on ACI 10.6.4, for ³/₄" concrete cover, bar spacing is limited to 12". Bar spacing in design is satisfactory.

Beam Design

Live Load: 100 PSF	
Dead Load:	
Ceiling	10 PSF
6-1/2" Concrete Slab	81 PSF
Sarnatherm XPS Insulation	0.69 PSF
Sarnafelt NWP-HD Separation Layer	0.13 PSF
Sarnafil G476-15 Waterproofing Membrane	0.33 PSF
Drainage Panel 900	0.23 PSF
Saturated Growth Media and Plants	<u>48 PSF</u>
	140.38 PSF ≈ 141 PSF

Strength Design

 $w_u = 1.4$ Dead Load x 1.7 Live Load $w_u = 1.4$ (141 PSF) x 1.7 (100 PSF) $w_u = 368$ PSF

Estimate end and interior span beam stem to be b=18", h=22". It was later determined that the interior spans could be designed with a beam width of 16" and larger reinforcing steel but for consistency in formwork and constructability, the interior span beams were left with a depth of 22" and a width of 18"

Beam Stem Estimate: $[18" \times (22"-6.5")](\frac{150 \text{ PCF}}{144 \text{ in}^2/\text{ft}^2}) (1.4) = 407 \text{ PLF}$ Area Factored Load:368 PSF x 15' = 5,520 PLFTotal Factored Load, wu:5,927 PLF

Determine load capacity of beams. See Tables 3 and 4 for end span and interior span load capacities.

End Spans: See Table 3. $w_u = 6.1 \text{ k/ft capacity} > 5.9 \text{ k/ft}$ Bottom Bars, (2) #14 [$\ell_n + 12''$] (1) #14 [0.875 ℓ_n] Top Bars, (3) #14 Open Stirrups: Max Spacing at Exterior End, 195G: (19)#5: 1@2'', 18@9'' Open Stirrups: Max Spacing at Interior End, 164G: (16)#4: 1@2'', 15@9'' Interior Spans: See Table 4. $w_u = 6.1 \text{ k/ft capacity} > 5.9 \text{ k/ft}$ Bottom Bars (2) #10 [$\ell_1 + 12''$]

Bottom Bars, (2) #10 [ℓ_n + 12"] (1) #10 [0.875 ℓ_n] Top Bars, (3) #14 Open Stirrups: Max Spacing at Each End, 164G: (16)#4: 1@2", 15@9"

Girder Design

Convert to uniform loads.

Concentrated load at center = 5.93 kips/ft (30 ft) = 177.9 kips

Estimate stem to be b=20", h=28". $[20" \times (28"-6.5")](\frac{150 \text{ PCF}}{144 \text{ in}^2/\text{ft}^2}) (1.4) = 627 \text{ PLF}$ Concentrated load factored moment, $M = \frac{(177.9 \text{ k} \times 28')}{8} = 622.65 \text{ ft-kips}$ Equivalent uniform load, $w = \frac{11M}{l_n^2} = \frac{11(622.65' \text{ kips})}{(28')^2} = 8.74 \text{ kips/ft}$ Total factored uniform load (for $-M_u$), $w_u = 8.74 \frac{kips}{ft} + 0.63 \frac{kips}{ft} = 9.37 \frac{kips}{ft}$ Factored positive moment, $+M_u = 622.5 \text{ ft-kips} + \frac{0.63 \text{ PLF} (28')^2}{16} = 653.4 \text{ ft-kips}$ Equivalent uniform load (for $+M_u$), $w_u = \frac{16(622.65' \text{ kips})}{(28')^2} + 0.63 \frac{kips}{ft} = 13.3 \frac{kips}{ft}$

Determine load capacity of girders. See Tables 5 and 6 for end span and interior span load capacities.

End Spans: See Table 5. $w_u = 9.8 \text{ k/ft}$ capacity > 9.37 k/ft Bottom Bars, (3) #11 [ℓ_n + 12"] (2) #11 $[0.875 \ell_n]$ Top Bars, (4) #12 Open Stirrups: Max Spacing at Exterior End, 175FfI: (17)#5: 1@2", 6@8", 10@11" Open Stirrups: Max Spacing at Interior End, 155FeI: (15)#5: 1@2", 5@8", 9@11" Interior Spans: See Table 6. $w_{\mu} = 10.9 \text{ k/ft}$ capacity > 9.37 k/ft Bottom Bars, (2) #14 [ℓ_n + 12"] (1) $\#14 [0.875 \ell_n]$ Top Bars, (4) #14 Open Stirrups: Max Spacing at Each End, 155FeI: (15)#5: 1@2", 5@8", 9@11" Check Torsion. Torsional moment capacity (with open stirrups) = 15 ft-kips. Estimate T_{μ} for the girder with live load on one side only. w_u (live load) = 0.17 KLF (15') = 2.55 kips/ft $T_{\mu} = 1/11 \text{ x} (2.55 \text{ kips/ft})(30'-1.67')^2 = 186.1 \text{ ft-kips}$ T_{μ} in girder = (60/1820)(186.1 ft-kips) = 6.13 ft-kips < 15 Closed stirrups and additional longitudinal bars are not required. Check Shear. Max V = (177.9 kips/2) + (0.63 KLF x 14') = 97.8 kipsEquivalent w_{μ} for shear = 97.8 kips / 14' = 7.0 kips/ft Initial stirrup spacing is ok. Bottom Bar Check. Equivalent $w_u = 13.3 \text{ kips/ft}$ $+M_{u} = 653.4$ ft-kips

For a 20" x 28" girder with a clear span of 28'-0" and (5)#11 bars, $+M_u = 696$ ft-kips. OK!

Initial Stirrup Adjustment.

Adjust for equivalent w_u of 7.0 kips/ft over the full span. Based on Table 5, use stirrup spacing 155I, (15)#5's: 1@2", 14@11" at each end.

SOLID ONE-WAY SLABS—END SPAN Top S fc' = 3,000 psi Grade 60 Bars Thickness (in.) 4 4% 5 5% 6 8% 7 7% 8 8% 9									ρ Stee ρ	el for - ≈ 0.0	- <i>M_u</i> 050	SOLID ON $f'_c = 3,000$	E-WAY psi	SLAE	3S—IN	ITERIO	OR SP Grad	AN e 60 E	Bars			To	ρ Stee ρ	el for - ≈ 0.0	- <i>M_u</i> 050		
Thickness (in.)	4	4½	5	5½	6	6%	7	7½	8	8½	9	9½	10	Thickness (in.)	4	41/2	5	5½	6	6½	7	7½	8	8½	9	91⁄2	10
Top Bars Spacing (in.)	#4 12	#4 12	#4 11	#4 9	#5 12	#5 11	#5 10	#5 10	#5 9	#6 12	#6 11	#6 10	#6 10	Top Bars Spacing (in.)	#4 12	#4 11	#4 10	#4 9	#5 12	#5 11	#5 10	#5 10	#5 9	#6 12	#6 11	#6 10	#6 10
Bottom Bars Spacing (in.)	#4 12	#4 11	#4 10	#4 8	#4 8	#5 12	#5 11	#5 11	#5 10	#5 9	#6 12	#6 11	#6 11	Bottom Bars Spacing (in.)	#3 10	#3 9	#3 7	#4 12	#4 11	#4 10	#4 10	#4 9	#4 8	#5 12	#5 11	#5 10	#5 10
Top Bars Free End Spacing (in.)	#4 12	T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#5 17												
T-S Bars Spacing (in.)	- #3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#5 17	Areas of Steel (in. ² /ft)	200	218	240	267	310	338	372	372	413	440	480	528	528
Areas of Steel (in 2/ft)														Bottom	.132	.147	.189	.200	.218	.240	.240	.267	.300	.310	.338	.372	.372
Top Interior Bottom	.200 .200	.200 .218	.218 .240	.267 .300	.310 .300	.338 .310	.372 .338	.377 .338	.413 .372	.440 .413	.480 .440	.528 .480	.528 .480	Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125														
CLEAR SPAN				FACT	ORED L	JSABLE	SUPER	MPOSE	D LOAD) (psf)				CLEAR SPAN				FACT	ORED U	SABLE	SUPER	IMPOSE	D LOAD) (psf)			
6'-0" 6'-6"	700 586	906 761	967											6'-0'' 6'-6''	703 589	923 775											
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	496 423 363 314 272 237	645 552 475 412 359 314	821 704 608 528 462 405	988 856 747 656 579	986 861 757 669	976 858 759	916							7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	498 425 365 315 273 238	657 562 485 420 367 321	907 778 673 586 513 452	988 856 747 656 579	935 822 727	894	980						
10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	207 158 138 120 105 91	276 191 167 146 127 111	357 248 218 192 169 149	513 364 323 287 256 228	593 481 429 383 343 308	674 591 528 473 426 383	814 722 647 582 524 473	890 790 708 636 574 518	957 859 774 700 634	987 890 806 731	952 865			10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	208 181 159 139 122 107	282 243 214 189 167 148	399 317 281 249 222 197	513 410 365 326 291 261	646 539 482 432 388 349	795 661 592 532 479 433	872 779 699 629 568 514	882 792 713 644 583	964 870 787 715	994 901 819	967		
13'-0" 13'-6" 14'-0" 14'-6" 15'-0" 15'-6"	79 68 58 49 42	97 84 73 62 53 45	131 115 101 88 76 66	204 182 162 145 129 115	277 249 224 202 182 163	346 312 282 256 231 209	428 388 352 320 291 264	469 426 386 351 320 291	575 523 477 435 397 363	664 605 552 505 462 423	787 719 657 602 552 507	937 857 785 721 662 610	999 914 837 769 707 651	13'-0" 13'-6" 14'-0" 14'-6" 15'-0" 15'-6"	94 82 71 61 53 45	131 116 102 90 79 69	176 157 139 124 110 97	234 210 188 169 151 136	315 285 257 233 210 190	392 355 322 293 266 242	465 423 384 350 319 291	529 481 438 400 365 333	650 593 541 495 453 416	746 681 623 570 523 480	882 806 739 678 623 573	959 880 809 745 688	939 863 795 733
16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"			56 48 40	102 90 79 69 60 51	147 132 118 105 94 83	190 171 155 140 126 113	241 219 199 181 164 149	265 241 220 200 182 165	332 304 278 255 233 213	388 356 327 300 275 253	466 429 395 363 335 309	562 519 479 442 409 378	600 554 511 473 437 405	16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"		60 51 44	86 76 66 57 49 42	121 108 96 86 76 66	172 156 140 127 114 102	220 200 182 165 150 136	265 242 221 201 184 167	305 279 255 233 213 195	381 350 322 296 272 250	442 406 374 345 318 293	528 487 450 416 384 355	635 587 543 503 467 433	678 627 580 538 499 463
19'-0" 19'-6" 20'-0"				44	73 64 56	101 90 80	135 122 109	149 135 122	195 178 162	232 213 195	284 262 241	350 324 300	374 347 321	19'-0" 19'-6" 20'-0"				58 50 43	91 81 72	123 111 100	152 138 125	178 162 147	230 211 194	270 249 229	329 304 281	402 373 346	429 399 370

Table 1. End Span, SlabCRSI, Page 7-12

Table 2. Interior Span, SlabCRSI, Page 7-17

77 K STREET Washington, DC

Todd Povell | Construction Management | Consultant: Dr. John Messner

f_c' f_y	= = 6	4,00	00 ps 00 ps	si si		REC	CTAN E	NGI ND	UL/ SF	ar b Pans	EAN	1S,			Υ	b →		_				BEAM	4		TOP	BM. ARS	
ST	M		BAR	S ⁽¹⁾								1	ΓΟΤΑΙ	CAP	PACITY	U = 1.	4D + 1	.7L ⁽³⁾)							$+ \varphi_{M_n}$	DEFL
h	b	вот	том	Lay-	TOP		SPAN	, l _n =	28 ft			SPAN	, l _n =	30 ft			SPAN	, l _n =	32 ft			SPAN	, (_n =	34 ft		-ΦM _n	(C)
in.	in.	l _n + 12 in.	0.875 lo	ers (2)		LOAD (4) k/lt	STIR. TIES (5)	φT _n β- kips	Aℓ sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	(6) ft-kip	(7) × 10 ⁻⁹ in.
	12	2# 8 2# 9 2#11 2#14		11111111	2# 8 2#10 3#10 2#14	1.7 2.3 3.3 4.1*	1336 243E 1536 244E 1836 244E 1946 424B	5 20 5 20 5 20 5 20 5 20	0.9 0.9 0.9 0.9	303 375 416 603 620 796 881 1167	1.4 2.0 2.9* 3.6*	133G 263E 163G 264E 193G 264E 204G 454B	5 20 5 20 5 20 5 20 5 20	0.9 0.9 0.9 0.9 0.9	320 402 444 647 660 852 936 1246	1.3 1.7 2.6* 3.1*	133G 283E 163G 284E 193G 284E 214G 484B	5 20 5 20 5 20 5 20 5 20 5 20	0.9 0.9 0.9 0.9 0.9 0.9	336 429 467 691 697 909 992 1325	1.1 1.5* 2.3* 2.8*	123G 293E 163G 294E 203G 294E 214G 294E	5 20 5 20 5 20 5 20 5 20	0.9 0.9 0.9 0.9 0.9	350 451 491 724 737 955 1040 1181	130 130 161 199 238 283 320 320	968 905 716 615
	14	2# 9 2#10 2#10 2#14	1#10	1 1 1 1 1 1 1	3# 7 3# 9 3#11 4#10	1.9 2.8 4.1 4.6*	1336 243E 1636 244E 1846 245E 1946 245E	7 26 7 26 7 26 7 26 7	1.0 1.0 1.0 1.0	360 437 503 695 798 1061 913 1188	1.7 2.5 3.6* 4.0*	133G 263E 163G 264E 194G 265E 204G 265E	7 26 7 26 7 26 7 26 7 26	1.0 1.0 1.0 1.0	381 468 532 745 848 1159 971 1274	 1.5 2.2* 3.1* 3.5* 	123G 283E 173G 284E 203G 284E 204G 285E	6 26 6 26 6 26 6 26	1.0 1.0 1.0 1.0	398 500 565 795 827 1045 1022 1359	1.3 1.9* 2.8* 3.1*	123G 293E 173G 294E 203G 294E 214G 295E	6 26 6 26 6 26 6 26	1.0 1.0 1.0 1.0	419 526 594 835 870 1099 1080 1427	163 149 203 236 290 344 330 369	806 764 595 553
~~	16	2# 9 2#11 2#14 2#10	2#10	11111111111	3# 8 3# 9 3#11 3#14	2.3 3.1 4.5" 5.3"	1336 214F 1636 214F 1846 215F 1946 345C	8 32 8 32 8 32 8 32 8 32	1.1 1.1 1.1 1.1	398 578 563 731 888 1130 1060 1529	2.0 2.7 3.9* 4.6*	133G 234F 163G 234F 194G 235F 194G 235F	8 32 8 32 8 32 8 32 8 32	1.1 1.1 1.1 1.1	421 623 597 787 945 1215 1119 1389	1.8 2.3 3.4* 4.1*	133G 244F 163G 244F 194G 245F 204G 245F	8 32 8 32 8 32 8 32 8 32	1.1 1.1 1.1 1.1	444 657 630 831 994 1282 1186 1466	1.6 2.1* 3.0* 3.6*	133G 264F 173G 264F 203G 265F 214G 265F	8 32 8 32 8 32 8 32 8 32	1.1 1.1 1.1 1.1	467 702 667 886 976 1368 1253 1562	164 194 246 240 337 351 378 468	736 677 545 462
	18	2# 8 2# 9 2#11 2#14	1# 8 1# 9 1#11 1#14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3# 8 3#10 4#11 3#14	25 34 50 6.1*	1336 244E 1536 214F 1846 2155 1856 3450	10 39 10 39 10 39 10 39	1.3 1.2 1.2	424 646 589 769 992 1244 1326 1723	2.2 3.0 4.4* 5.3*	133G 264E 163G 264E 194G 235F 205G 365C	10 39 10 39 10 39 10 39	1.3 1.3 1.2 1.2	449 694 628 861 1055 1336 1409 1831	1.9 2.6 3.8* . 4.7*	133G 283E 163G 284E 194G 245F 214G 385C	10 39 10 39 10 38 10 38	1.2 1.2 1.2 1.2	473 582 662 918 1110 1411 1392 1939	1.7 2.3* 3.4* 4.2*	123G 293E 163G 294E 203G 265F 214G 265F	10 38 10 38 10 38 10 38 10 38	1.2 1.2 1.2 1.2	494 612 697 964 1097 1503 1463 1785	195 195 242 299 358 455 481 481	645 603 464 410

Table 3. End Span, BeamsCRSI, Page 12-31

f'_c f_y	= 6	4,00	0 ps 0 ps	si si		REC	CTAP INTE	IGI	UL/ OR	AR B SPA	EAN NS	1S,			T.T.	b →		-			5	BEAM	M		TOP	BM.	2
ST	EM		BAR	S ⁽¹⁾								Т	OTAL	CAF	PACITY	U = 1.	4D + 1	.7L ⁽³⁾								$+ \varphi M_n$	DEFL
		BOT	том	Lay-	TOP		SPAN	, (_n =	28 ft			SPAN,	$\ell_n =$	30 ft			SPAN,	$\ell_n =$	32 ft			SPAN	, l'n =	34 ft		$-\Phi M_n$	(0)
n in.	b in,	l _n + 12 in.	0.875 lp	ers (2)	101	LOAD (4) k/lt	STIR. TIES (5)	$\begin{array}{c} \varphi T_n \\ t_l \\ kips \end{array}$	A(54. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/tt	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	(6) ft-kip	(7) × 10 ⁻⁹ in.
	.12	2# 7 2# 8 2#10 2#11		1 1 1 1 1 1 1 1	2# 9 2#10 2#14 2#14	21 27 41 45	1236 244E 1436 244E 1646 244E 1646 424B	5 21 5 21 5 21 5 21 5 21	0.9 0.9 0.9 0.9	290 488 367 558 651 777 709 1018	1.8 2.3 3.6 3.9	123G 263E 143G 264E 173G 264E 174G 444B	5 21 5 21 5 21 5 21 5 21	0.9 0.9 0.9 0.9	307 393 389 600 636 835 758 1079	1.6 2.0 3.1 3.4	123G 273E 143G 274E 173G 274E 184G 274E	5 20 5 20 5 20 5 20 5 20 5 20	0.9 0.9 0.9 0.9 0.9	324 415 412 632 673 883 807 950	1.4 1.8 2.8 3.1	123G 283E 153G 284E 183G 284E 193G 284E	5 20 5 20 5 20 5 20 5 20 5 20	0.9 0.9 0.9 0.9 0.9	342 438 437 665 715 931 789 1001	100 161 130 199 199 320 238 320	516 551 440 418
	14	2# 8 2# 9 2#11 2#10	1#10	1 1 1 1 1 1 1 1 1	3# 8 3# 9 3#11 4#10	2.7 3.3 4.8 5.2	133G 244E 143G 244E 164G 245E 164G 245E 245E	7 27 7 27 7 27 7 27 27 27 27	1.0 1.0 1.0 1.0	354 558 441 641 725 1023 780 1078	2.3 2.9 4.2 4.5	133G 264E 153G 264E 174G 265E 174G 265E	7 26 7 26 7 26 7 26 7 26	1.0 1.0 1.0 1.0	375 600 472 689 775 1100 835 1160	2.1 2.5 3.7 4.0	133G 274E 153G 274E 174G 274E 184G 275E	7 26 7 26 7 26 7 26 7 26	1.0 1.0 1.0 1.0	397 632 499 727 817 976 889 1224	1.8 2.3 3.3 3.5	133G 293E 153G 294E 183G 294E 184G 295E	7 26 7 26 7 26 7 26 7 26	1.0 1.0 1.0 1.0 1.0	418 521 527 775 802 1039 935 1305	131 192 163 236 243 344 290 369	476 473 386 351
22	16	2# 8 2#10 2#11 2#14		1 1 1 1 1 1	3# 8 3#10 3#11 3#14	27 42 49 6.6	123G 214F 153G 215F 154G 215F 154G 215F 175G 345C	8 33 8 33 8 33 8 33 8 33	1.2 1.1 1.1	352 536 550 870 721 985 1062 1487	2.4 3.6 4.3 5.7	123G 234F 153G 234F 164G 235F 175G 365C	8 33 8 33 8 33 8 33 8 33	1.1 1.1 1.1 1.1	373 579 584 778 771 1064 1143 1584	2.1 3.2 3.8 5.0	123G 244F 163G 244F 173G 245F 184G 245F	8 33 8 32 8 32 8 32 8 32	1.1 1.1 1.1 1.1	394 611 623 824 758 1125 1133 1428	1.8 2.8 3.3 4.5	123G 254F 163G 254F 173G 255F 194G 255F	8 32 8 32 8 32 8 32 8 32		416 644 657 869 800 1185 1202 1508	132 194 205 295 246 351 337 468	391 402 365 297
	18	2#7 2#8 2#10 2#11	1# 7 1# 8 1#10 1#11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3# 9 3#10 3#14 3#14	3.1 4.0 6.1	1236 244E 1436 214E 1646 215F 1606 3454	10 40 10 40 10 40 10 40	13 13 13	401 627 509 693 895 1163 1051 1455	2.7 3.5 5.3 5.9	123G 264E 143G 234F 174G 235F 174G 365C	10 39 10 39 10 39 10 39	1.3 1.3 1.3	426 675 541 748 957 1254 1042 1584	2.4 3.1 4.7 5.2	123G 284E 143G 284E 174G 245F 184G 245F	10 39 10 39 10 39 10 39	1.3 1.3 1.3 1.3 1.2	450 723 573 837 1011 1327 1110 1418	2.1 2.7 4.2 4.6	123G 293E 153G 294E 184G 265F 194G 265F	10 39 10 39 10 39 10 39	1.3 - 1.3 - 1.2 - 1.2	475 594 609 880 1074 1419 1178 1516	151 242 195 299 299 481 358 481	344 367 293 279

Table 4. Interior Span, BeamsCRSI, Page 12-61

77 K STREET

Washington, DC

Todd Povell | Construction Management | Consultant: Dr. John Messner

f_c' f_y	= 6	4,00	00 ps 00 ps	si si		RECTANGULAR BEAMS, END SPANS													M								
ST	EM		BAR	S(1)								1	ΤΟΤΑ	LCA	PACITY	<i>U</i> = 1	.4D + 1	1.7L ⁽³⁾								+фм.	DEFL
h	Ь	BOT	том	Lay-	TOP		SPAN	, (_n =	24 f	t		SPAN	, l _n =	26 ft	1		SPAN	$\ell_n =$	28 ft			SPAN	i, ℓ _n =	30 ft	t	$-\Phi M_n$	(C)
in.	in.	l _n + 12 in.	0.875 l _a	(2)		LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/lt	STIR TIES (5)	φT _n ft- kips	Al sq.	STEEL WGT Ib.	LOAD (4) k/īt	STIR. TIES (5)	φT _n ft- kips	Al sq.	STEEL WGT Ib.	(6) It-kip	(7) × 10 ⁻⁹ in.
	14	2# 9 2#11 2#11 2#11	1#11 1#11	1 1 1 1 1 1 2	3# 8 3# 9 3#11 4#11	3.8 5.0 7.4 8.2	113I 184F 134I 185F 135I 295C 135I 295C	9 35 9 35 9 35 9 35 35	1.3 1.2 1.2 1.2	348 507 543 772 823 1193 913 1283	3.2 4.3 6.3 7.0	123I 204F 133I 205F 145I 205F 145I 315C	9 34 9 34 9 34 9 34 9	1.2 1.2 1.2 1.2 1.2	376 553 523 843 885 1074 981 1376	2.8 3.7 5.5 6.0	1231 214F 1431 214F 1541 215F 1651 215F	8 34 8 34 8 34 8 34 8 34	1.2 1.2 1.2 1.2	399 568 561 741 873 1141 1063 1244	2.4 3.2 4.8 5.2	123I 234F 143I 234F 164I 235F 165I 235F	8 33 8 33 8 33 8 33 8 33	1.2 1.2 1.2 1.2 1.2	422 633 594 797 930 1228 1119 1336	199 234 299 290 428 428 428 428 504	500 459 360 352
26	16	2#10 2#11 2#11 6# 6	1#11 6# 6	1 1 1 1 1 2 1	3# 8 3#10 3#11 3#14	4.1 5.8 7.6 9.0	113I 165G 134I 165G 135I 245D 145Fdi 245D	11 43 11 43 11 43 11 43 43	1.4 1.4 1.4 1.4	395 657 593 793 827 1116 1007 1282	3.5 4.9 6.5 7.7	113i 184G 134i 185G 145i 265D 145i 265D	11 42 11 42 11 42 11 42 11 42	1.4 1.4 1.4 1.4	421 587 629 868 890 1204 1068 1382	3.0 4.2 5.6 6.6	1231 214F 1431 1956 1541 1956 1651 285D	10 42 10 42 10 42 10 42 10 42	1.4 1.4 1.3 1.3	452 650 616 924 876 1117 1156 1481	2.6 3.7 4.8 5.8	123I 234F 143I 205G 164I 205G 165I 305D	10 42 10 42 10 42 10 42 10 41	- 1.4 1.3 - 1.3 - 1.3	479 700 652 979 934 1186 1217 1581	251 236 302 364 436 436 471 590	424 406 343 301
	18	2#8 2#10 2#11 2#11	1# 8 1#10 1#11 2#11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3# 9 3#10 3#14 3#14	4.5 6.4 8.4 10.5	113i 165G 134i 165G 135i 245D 155Fel 295C	13 52 13 52 13 52 13 52	1.5 1.5 1.5 1.5	410 682 638 846 959 1260 1101 1475	3.9 5.5 7.2 8.9	113i 184G 134i 185G 145i 265D 165Fdi 265D	13 51 13 51 13 51 13 51	1.5 1.5 1.5 1.5	437 609 678 926 1030 1358 1182 1481	3.3 4.7 6.2 7.7	1131 194G 1431 195G 1541 285D 1651 285D	13 51 13 51 13 51 13 51 13 51	1.5 1.5 1.5 1.5	464 649 667 986 1023 1455 1249 1588	2.9 4.1 5.4 6.7	123I 264E 143I 205G 164I 305D 165I 305D	13 50 13 50 13 50 13 50 13 50	1.5 1.5 1.5 1.5	496 763 707 1046 1089 1553 1315 1695	238 296 368 368 442 602 568 602	377 363 292 268
	20	2#9 2#10 2#11 3#11	1# 9 1#10 2#11 2#11		3# 9 3#11 3#14 4#14	5.2 7.1 10.6 13.3	113I 155H 134I 215E 145FdI 295C 295C 485A	15 61 15 61 15 61 15 61	1.7 1.7 1.7 1.7	463 724 694 1015 1092 1495 1573 2156	4.4 6.0 9.1 11.3	113I 165H 134I 225E 155FcI 265D 175EhI 315C	15 61 15 61 15 61 15 61	1.7 1.7 1.7 1.7	495 777 738 1079 1173 1499 1486 1888	3.8 5.2 7.8 <u>9.8</u>	1231 175H 1431 175H 1551 2850 175FI 345C	15 60 15 60 15 60 15 60	1.7 1.6 1.6	531 829 729 1018 1240 1607 1573 2037	3.3 4.5 6.8 8.5	123I 185H 143I 185H 165I 265E 185FfI 365C	15 59 15 59 15 59 15 59 15 59	- 1.6 - 1.6 - 1.6	562 881 773 1082 1321 1632 1673 2164	298 298 371 447 576 612 696 776	345 328 259 219

Table 5. End Span, GirderCRSI, Page 12-34

f_c' f_y	= = 6	4,00	0 ps 0 ps	si si		REC		NG	UL/ OR	AR B SPA	EAN	1S,				b →						BEA	M		TOF	BM.	
ST	EM		BAR	S ⁽¹⁾								T	OTA	LCA	PACITY	<i>U</i> = 1	.4D + 1	1.7L ⁽³)	-						+фM ₀	DEFL
b	h	вот	том	Lay-	TOP		SPAN	1, l _n =	24 ft			SPAN	. l _n =	26 ft			SPAN	, l _n =	28 ft			SPAN	, l _n =	30 ft		$-\Phi M_n$	(C)
in.	in.	l _n + 12 in.	0.875 lp	(2)		LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/it	STIR TIES (5)	φī _n tt- kips	Al sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq. in.	STEEL WGT Ib.	(6) It-kip	(7) × 10 ⁻⁹ in.
	14	2# 9 2#10 2#10 2#14	1#10	1 1 1 1 1 1 1 1	3# 9 3#10 4#10 3#14	5.5 6.9 8.8 11.0	113I 185F 124I 185F 125I 295C 264C 295C	9 35 9 35 9 35 9 35 35	1.3 1.3 1.3 1.3	381 671 522 760 729 1112 967 1294	4.7 5.8 7.5 9.3	113I 204F 124I 205F 135I 205F 145FcI 315C	9 35 9 35 35 9 35 9 35 35	1.3 1.3 1.2 1.2	408 590 557 832 789 990 998 1393	4.1 5.0 6.5 8.1	1231 214F 1341 215F 1441 215F 1451 345C	9 34 9 34 9 34 9 34 9 34	1.2 1.2 1.2 1.2 1.2	439 628 599 885 778 1055 1059 1510	3.5 4.4 5.6 7.0	123I 234F 133I 235F 144I 235F 155I 365C	9 34 9 34 9 34 9 34	1.2 1.2 1.2 1.2 1.2	467 679 581 957 825 1140 1134 1609	199 290 248 359 359 460 411 574	287 272 226 200
•	16	2# 9 2#11 2#14 2#14		1111112	3# 9 3#11 3#14 5#11	5.6 8.3 11.3 11.6	103I 165G 125I 245D 145FdI 245D 145Fei 245D	11 44 11 44 11 44 11 44	1.4 1.4 1.4 1.4	378 645 685 988 942 1217 1000 1275	4.8 7.1 9.6 9.9	113I 185G 124I 265D 135I 265D 145FdI 265D	11 43 11 43 11 43 11 43	1.4 1.4 1.4 1.4	409 711 666 1069 989 1317 1066 1380	4.1 6.1 8.3 8.5	1131 1956 1341 1956 1451 285D 1451 285D	11 43 11 43 11 43 11 43	1.4 1.4 1.4 1.4 1.4	437 758 717 976 1064 1417 1132 1485	3.6 5.3 7.2 7.4	1231 204G 1441 205G 1551 305D 1551 305D	11 42 11 42 11 42 11 42 11 42	1.4 1.4 1.4 1.4 1.4	468 653 769 1038 1139 1517 1212 1590	200 294 302 436 418 590 418 627	245 232 190 191
20	18	2# 8 2# 9 2#11 2#10	1# 8 1# 9 1#11 2#10	1 1 1 1 1 1 1 1 1 1	3#10 3#11 3#14 4#14	6.6 8.2 11.5 13.3	113I 165G 114I 245D 135FdI 245D 145FfI 295C	13 53 13 53 13 53 13 53 13 53	1.6 1.6 1.6 1.6	438 711 583 970 912 1212 1057 1444	5.6 7.0 9.8 11.3	113I 185G 124I 185G 135I 265D 155Fel 315C	13 53 13 52 13 52 13 52 13 52	1.6 1.5 1.5 1.5	470 783 632 889 971 1313 1142 1556	4.9 6.1 8.5 9.7	1131 1956 1341 1956 1451 285D 155Fdl 285D	13 52 13 52 13 52 13 52 13 52	1.5 1.5 1.5 1.5	502 835 681 949 1045 1413 1213 1566	.4.2 5.3 7.4 8.5	1231 205G 1331 205G 1451 305D 1551 305D	13 51 13 51 13 51 13 51 13 51	1.5 1.5 1.5 1.5	539 887 666 1009 1105 1513 1284 1677	238 368 296 442 442 602 477 759	218 216 179 157
	20	2# 8 2#10 2#11 2#14	1# 8 1#10 1#11 1#14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3#10 3#11 4#14 4#34	6.7 8.5 12.4 14.8	103I 155H 114I 215E 135FdI 295C 265C 485A	16 63 16 63 16 63 16 63	1.7 1.7 1.7 1.7	435 701 647 986 1038 1456 1385 2011	5.7 7.3 10.6 12.6	113i 165H 124i 225E 135i 265D 155Fii 315C	16 62 15 62 15 62 15 62	1.7 1.7 1.7 1.7	472 754 701 1051 1108 1463 1309 1739	49 63 91 109	1131 175H 1241 175H 1451 2850 155Fel 345C	15 61 15 61 15 61 15 61	17 17 17 17	504 807 746 992 1193 1575 1392 1885	4.3 5.5 7.9 9.5	113I 185H 133I 185H 145I 265E 165FdI 305D	15 61 15 61 15 60 15 60	1.7 1.7 1.7 1.7	535 859 743 1058 1263 1603 1489 1884	239 371 371 447 447 776 612 776	189 190 154 141

Table 6. Interior Span, GirderCRSI, Page 12-64